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Scenario of Dynamic Tomography |
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 Timevarying f(xkK), 2-D or 3-D

 Noisy tomographic projection datay, , for example, line
Integration

e Limited view angles at each time: 1~3

e Observation angles change over time

« Goal: reconstruct f from y
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Motivating Applications I

e Nuclear medicine

— PET(Positron Emission
Tomography)

— SPECT (Single Photon
Emission Computed
Tomography)

— First pass and equilibrium
blood pool imaging. :

— Myocardium perfusion A 3-head SPECT
Imaging.

e |maging of explosive events
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|nterest in Problems Where: I

o Characteristics
— Scenes composed of few discrete “objects’
— Interest in object |ocalization/characterization
— Simple “textures’ or less interest in texture

e Challenges
— Data are sparse and noisy
— Tomographic operator isill-posed
— High dimension: 2-D or 3-D image sequence

Challenging Inverse Problem! I
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Previous Works. Object-based
Dynamic Tomography

o P.C.Chiao, W.L.Rogers, N.H.Clinthorne, JA.Fesder, and
A.O.Hero, 1994
— Cardiac PET study with a polygona model

— Joint estimation left ventricle boundary and dynamic intensity
parameters

— Known topology and static boundary
— Static tomographic scenario with multiple projections

P.C.Chiao, W.L.Rogers, N.H.Clinthorne, JA.Fessler, and A.O.Hero,
“ Model-based estimation for dynamic cardiac studiesusing ECT” ,
|EEE Trans Medical Imaging, 1994.
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e G.S.Cunningham, K.M.Hanson, and

X.L.Battle,1998:

— First pass blood pool imaging of the right ventricle of
an artificial heart from very noisy SPECT data

— 3-D triangulated surface model evolves over time
— Difficult to handle topological changes

— 24 view obtained at each time

— No temporal modeling of object boundary

G.S.Cummingham, K.M.Hanson, and X.L.Battle, “ Three-
dimensional reconstruction fromlow-count SPECT data using
deformable models’ ,Optics Express, 1998.
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 Tom Asaki and Kevin Vixie, 2002
— Reconstructing a parameterized evolving curve
— Single angle projection at each time
— No topological changes and temporal modeling

Tom Asaki and Kevin R. Vixie, “ Reconstruction of evolving ,
non-convex curves from a sequence of single angle projections’ ,
1t SAM Imaging Science Conference, Boston, 2002.
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Curve Evolution Methods

e Snake

M.Kass, A. Witkin and D. Terzopoulos, “ Shakes: active contour models’ , 1JCV,1988.

e Edge-based Active Contours

V. Casellesand R. Kimmel and G. Sapiro, “ Geodesic Active contours’ ,IJCV, 1997.

* Region-based Active Contours

T.F. Chan and L.A.Vese, “ Active contours without edges’ , IEEE Trans Image
Processing, 2001.

A.Tsai, A.Yezzi, and A.Willsky, “ Curve Evolution Implementation of the Mumford-
Shah Functional for Image Segmentation, Denoising, Interpolation, and
Magnification” , IEEE Trans Image Processing, 2001.
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Level Set Methods

e S.Osher and JA. Sethian
— Implicit shape representation

— Solving PDEsto evolve
curves, surfaces

— Easy topological changes

— Geometric quantity easy to

S.Osher and J. A.Sethian, “ Fronts

propagation with curvature-dependent
speed: algorithms based on Hamilton-Jacobi
formulations’ , Journal of computational
physics, 1988.
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Our Approach I

» Geometric object-based scene modeling

— Continuous curves, surfaces for object boundary

— Observation model based on geometric scene modeling
 Modeling object temporal dynamics

— Shape dynamics for temporal boundary smoothness to
Improve robustness to data sparsity and noise

 Unified variational formulation

— Curve evolution methods for joint estimation of
boundaries and intensities

— Apply level set methods to infer topological uncertainty
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Scene Modeling I

Boundary Curve: C,
Object Region: G,

/

Intensity parameter: b,

Background region: WG,

Region indication function

f(x,k) =b2r{x)+b>(1- r(x))

« Unknowns to estimate for reconstruction:
—Boundary sequence: C=[C,, C,, -, C,/]
—Intensity sequence: b = [b,, b,, -, b,]
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Observation Model

Observation |~ - I-th sample at timek
G(k)y Y
angle changes
over time
flx,k)
//
Intensity parameters
J_\
i _ % s | 2 | |
Y =b @ H.(X)dx+b, H!(x)dx + w!
ck -— \Gck /V A

I Objectreglon |I Background region I I Projection kernel I IAdditive noisel
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V ector Form of Observation Model I

y=HDb +w

RN

Observation Intensity I noise vector
Vector

matrix

Observation
data vector

éH u .
& . g function of
e j
H=6 He G Cu
& .
e U
8 HH
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Object Dynamics |: Intensity Dynamics I

e Autoregressive Model:

bk+1_ By b +uk

Intensity at | | System I\/Iatrlx Intensity at Gaussian Noise
time k+1 at timek time k u =N(@O,P)

e Binary model for current experiments

* Need to establish correspondence for more
complicated cases
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Object Dynamics |1: Shape Dynamics I

 Shape dynamics based on affine transform:

k+1 A<(C )+V

/ \
AN
Boundary Affine Boundary Smooth variation
curve at time transform at curve at time to account for
k+1 time k k model error

* Globa motion model for each point on the
curve
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Variational Reconstruction I

e Joint estimation of (C,b) asthe minimizer of an
energy function:

(é, 6) =agminE(C,b)

(C.b)
& 5
E(C.b) =8 ¥ - Hif(Cob ] +1 IC I+ Ibyes - B I +aW(Crurs ACCY)
K . — g

g e / ha il ﬂl

—~ / / Z

E, E, = E,
Datafidelity Spatial shape Intensity Shape dynamics. Distance

smoothness prior dynamics between Curves
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Distance between Curves for
Shape Dynamics

e Distance between two curves:
W(C,,C,)= o If.(x)- fCZ(L)Ip\dL

/P — «\ // \
——

\~ \
Implicit representation: |§| Exponent p:

negative inside | | p=0 : area of P(C.C))
positive outside | || p>=1: penalize parts far away

p=1in current experiments

 Incorporation of shape dynamics.
@)

E,=a W(C.., A(Cy))
k
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Solution Approach I

o “Coordinate Descent” between intensity
parametersb and object boundaries C

| v

Minimizew.rt b : a Minimizew.r.t C : evolve
C, In the gradient descent

direction with level set
methods:

low order quadratic
optimization problem
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Solution Detalls I I

» First variation of datafidelity term E w.r.t C,:

~ e ~ T

// /7
Covariance | [[CleanData| | =~ j(b°- b YH(CIN. ifk=i
| matrix \ Y=Hb NG Y :|’(bk RGN £ 1 jJ

I Curvature I Normal
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Solution Details |1: I

 First variation of shape dynamicsterm E, w.r.t C,
when p = 1.

Ne, E = (e (C)+ e, (Cea) LN,
/ \
Temporal Temporal
smoothness to smoothness to

next curve

previous curve

 Notations: A (x) =L, x+Db,
Ci = A 1(C.1).Cu = A(C).C, ® f ,C,® f(
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Experiment |: 2D + Time

Experiment setup: Observation data:

e Observation kernel: line _
integration along asingle Observation at one
angle at each time instant time Instant

* View angle changes over 100

Ofset

20
e Gaussian noise 27dB

time 80 I
* Dynamic models A,,B, : > II“II II
identity transform * I I I I

-~
k (time Index e 1127260
( ) 15 fé;;:zsf, 703843962
20 g 141

oo
I

e Seguencesize: 64*64*20
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Experiment |: Dynamic Results I

True sequence Our reconstruction

"

Frame-by-frame recon 3D Tikhonov recon

Object
based, but
no temporal
smoothness

temporally
<+ Ssmoothed,
but no object
model
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Experiment |: Static Results

Compared with true boundaries:

Time varying intensities

25¢

Intensity
=) o S

|4

=

5 10 15 20
time(k)
True b°
Estimated b°

e===f=== True bP
=+ Edtimated b"
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Experiment |1:3D + Time

o Experiment setup
— Beating left and right ventricles from MCAT phantom

P.H.Pretorius, W.Xia, M.A.King, B.M.W.Tsui, T.SPan, and B.J.Villegas, “
Determination of left and right ventriclular volume and g ection fraction using a
mathematical cardiac torso phantom for gated blood pool SPECT” , J Nucl Med, 1996.

— Projection kernel: paralle line integration
— 3view angles per time instant
— View angles change over time

— Dynamic models A,,B, : identity transform
— Gaussian noise: 15 dB
— Seguence Size : 32* 32* 28* 32
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Experiment |l: Projection Data I

k=11 K=16 k=21 k=26
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Experiment |l: Results I

True seguence Recon sequence

1 1

QY
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Experiment |l: Intensity Curves

Biasdueto
regularization

BOD
T0F
— true B°
2 — Estimated f°
> = = True l?:b .
o 4O - = Estimated p
C
"ﬂ_'J a0
<
20F
10F
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_10 L L L L L L
5 10 15 20 25 an
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Extensions I

e Upto now:

— Our approach for object-based dynamic
tomography
— Modeling object dynamics

— Dynamic shape models assumed known a priori
up to now.

e Extensions:
— Learning shape dynamics
— Sub-problem: shape matching
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L earning Shape Dynamics I

« Motivation:
— A, maybe unknown in practice.
— Also of interest for tracking applications

e Problem set up:

Inputs: iC, C . CL Outputs:
M training N |} ~2 2 5 Estimated affine
Sequences \Il Cl ’ Cz’ ’ CK i,/ . transforms: A,
.o . : J7 k=1,.. K-1.
I o . . I
¥ e " .
1C", G, Gk b
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Energy-based Method I

e Estimate affinetransforms as the minimizer of the
energy function:

O

=d a W(Ck+1’ k+1) + | a Ha;k+1 B _kH

m= =1 k=1 .

/ Pl \
Z Z |
/ ) |
Datafidelity: distance | | Regularization || Vector of unknown

between shapes term parameters of A,
Clin+1 = Ak(Clin+1)
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Sub-problem: Shape Matching I

e (Given adistance measure, estimate an affine transform
minimizing the distance of two curves C, and C.:

AGa)=argmnW(C, A(Cz;gz)

X Py \\\\‘\

N\

VAN

Affine Unknown Distance C
transform parameters to between two Tran sff)rm ed
be estimated

curves

curve
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Experiment |11: Shape Matching I

e Training data Estimation results

X) =Lx+b with
602460 0.96260)
& 08369 047804
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Conclusions I

 Variationa approach for tomographic
reconstruction of dynamic objects

e Shape dynamics based on distance between
shapes

e Curve evolution and level set methods for
Implementation

e Extensionsto learning shape dynamics and
shape matching
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